A sharp $L_p$-regularity result for second-order stochastic partial differential equations with unbounded and fully degenerate leading coefficients (1905.07545v1)
Abstract: We present existence, uniqueness, and sharp regularity results of solution to the stochastic partial differential equation (SPDE) \begin{align} \label{abs eqn} du=(a{ij}(\omega,t)u_{xixj}+f)dt + (\sigma{ik}(\omega,t)u_{xi}+gk)dwk_t, \quad u(0,x)=u_0, \end{align} where ${wk_t:k=1,2,\cdots}$ is a sequence of independent Brownian motions. The coefficients are merely measurable in $(\omega,t)$ and can be unbounded and fully degenerate, that is, coefficients $a{ij}$, $\sigma{ik}$ merely satisfy \begin{align} \label{abs only} \left(\alpha{ij}(\omega,t)\right)_{d\times d}:= \left(a{ij}(\omega,t)-\frac{1}{2}\sum_{k=1}{\infty} \sigma{ik}(\omega,t)\sigma{jk}(\omega,t)\right) \geq 0. \end{align} In this article, we prove that there exists a unique solution $u$ to \eqref{abs eqn}, and \begin{align} \notag |u_{xx}|{\mathbb{H}\gamma_p(\tau,\delta)} &\leq N(d,p) \bigg( |u_0|{\mathbb{B}p{\gamma+2 \left(1-1/ p \right)}} + | f|{\mathbb{H}\gamma_p( \tau,\delta{1-p} )} \label{abs est} &\qquad \qquad+|g_x|p_{\mathbb{H}\gamma_p( \tau, |\sigma|p \delta{1-p},l_2)}+ | g_x|_{\mathbb{H}\gamma_p( \tau,\delta{1-p/2},l_2)} \bigg), \end{align} where $p\geq 2$, $\gamma\in \mathbf{R}$, $\tau$ is an arbitrary stopping time, $\delta(\omega, t)$ is the smallest eigenvalue of $\alpha{ij}(\omega, t)$, $\mathbb{H}_p\gamma(\tau, \delta)$ is a weighted stochastic Sobolev space, and $\mathbb{B}_p{\gamma+2 \left(1-1/ p \right)}$ is a stochastic Besov space.