Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stratospheric Aerosol Injection as a Deep Reinforcement Learning Problem (1905.07366v1)

Published 17 May 2019 in cs.LG, physics.ao-ph, and stat.ML

Abstract: As global greenhouse gas emissions continue to rise, the use of stratospheric aerosol injection (SAI), a form of solar geoengineering, is increasingly considered in order to artificially mitigate climate change effects. However, initial research in simulation suggests that naive SAI can have catastrophic regional consequences, which may induce serious geostrategic conflicts. Current geo-engineering research treats SAI control in low-dimensional approximation only. We suggest treating SAI as a high-dimensional control problem, with policies trained according to a context-sensitive reward function within the Deep Reinforcement Learning (DRL) paradigm. In order to facilitate training in simulation, we suggest to emulate HadCM3, a widely used General Circulation Model, using deep learning techniques. We believe this is the first application of DRL to the climate sciences.

Citations (8)

Summary

We haven't generated a summary for this paper yet.