Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The method of Chernoff approximation (1905.07309v2)

Published 17 May 2019 in math.FA, math-ph, math.AP, math.MP, math.NA, and math.PR

Abstract: This survey describes the method of approximation of operator semigroups, based on the Chernoff theorem. We outline recent results in this domain as well as clarify relations between constructed approximations, stochastic processes, numerical schemes for PDEs and SDEs, path integrals. We discuss Chernoff approximations for operator semigroups and Schr\"{o}dinger groups. In particular, we consider Feller semigroups in $\mathbb{R}d$, (semi)groups obtained from some original (semi)groups by different procedures: additive perturbations of generators, multiplicative perturbations of generators (which sometimes corresponds to a random time-change of related stochastic processes), subordination of semigroups / processes, imposing boundary / external conditions (e.g., Dirichlet or Robin conditions), averaging of generators, "rotation" of semigroups. The developed techniques can be combined to approximate (semi)groups obtained via several iterative procedures listed above. Moreover, this method can be implemented to obtain approximations for solutions of some time-fractional evolution equations, although these solutions do not posess the semigroup property.

Summary

We haven't generated a summary for this paper yet.