Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uneven illumination surface defects inspection based on convolutional neural network (1905.06683v3)

Published 16 May 2019 in cs.CV and eess.IV

Abstract: Surface defect inspection based on machine vision is often affected by uneven illumination. In order to improve the inspection rate of surface defects inspection under uneven illumination condition, this paper proposes a method for detecting surface image defects based on convolutional neural network, which is based on the adjustment of convolutional neural networks, training parameters, changing the structure of the network, to achieve the purpose of accurately identifying various defects. Experimental on defect inspection of copper strip and steel images shows that the convolutional neural network can automatically learn features without preprocessing the image, and correct identification of various types of image defects affected by uneven illumination, thus overcoming the drawbacks of traditional machine vision inspection methods under uneven illumination.

Citations (2)

Summary

We haven't generated a summary for this paper yet.