Papers
Topics
Authors
Recent
Search
2000 character limit reached

The one-dimensional Stefan problem with non-Fourier heat conduction

Published 15 May 2019 in cond-mat.mes-hall | (1905.06320v2)

Abstract: We investigate the one-dimensional growth of a solid into a liquid bath, starting from a small crystal, using the Guyer-Krumhansl and Maxwell-Cattaneo models of heat conduction. By breaking the solidification process into the relevant time regimes we are able to reduce the problem to a system of two coupled ordinary differential equations describing the evolution of the solid-liquid interface and the heat flux. The reduced formulation is in good agreement with numerical simulations. In the case of silicon, differences between classical and non-classical solidification kinetics are relatively small, but larger deviations can be observed in the evolution in time of the heat flux through the growing solid. From this study we conclude that the heat flux provides more information about the presence of non-classical modes of heat transport during phase-change processes.

Citations (18)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.