Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The one-dimensional Stefan problem with non-Fourier heat conduction (1905.06320v2)

Published 15 May 2019 in cond-mat.mes-hall

Abstract: We investigate the one-dimensional growth of a solid into a liquid bath, starting from a small crystal, using the Guyer-Krumhansl and Maxwell-Cattaneo models of heat conduction. By breaking the solidification process into the relevant time regimes we are able to reduce the problem to a system of two coupled ordinary differential equations describing the evolution of the solid-liquid interface and the heat flux. The reduced formulation is in good agreement with numerical simulations. In the case of silicon, differences between classical and non-classical solidification kinetics are relatively small, but larger deviations can be observed in the evolution in time of the heat flux through the growing solid. From this study we conclude that the heat flux provides more information about the presence of non-classical modes of heat transport during phase-change processes.

Citations (18)

Summary

We haven't generated a summary for this paper yet.