Higgs bundles and flat connections over compact Sasakian manifolds
Abstract: Given a compact K\"ahler manifold $X$, there is an equivalence of categories between the completely reducible flat vector bundles on $X$ and the polystable Higgs bundles $(E,\, \theta)$ on $X$ with $c_1(E)= 0= c_2(E)$ \cite{SimC}, \cite{Cor}, \cite{UY}, \cite{DonI}. We extend this equivalence of categories to the context of compact Sasakian manifolds. We prove that on a compact Sasakian manifold, there is an equivalence between the category of semi-simple flat bundles on it and the category of polystable basic Higgs bundles on it with trivial first and second basic Chern classes. We also prove that any stable basic Higgs bundle over a compact Sasakian manifold admits a basic Hermitian metric that satisfies the Yang--Mills--Higgs equation.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.