Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Iterative Alpha Expansion for estimating gradient-sparse signals from linear measurements (1905.06097v1)

Published 15 May 2019 in stat.ML, cs.LG, math.ST, stat.CO, stat.ME, and stat.TH

Abstract: We consider estimating a piecewise-constant image, or a gradient-sparse signal on a general graph, from noisy linear measurements. We propose and study an iterative algorithm to minimize a penalized least-squares objective, with a penalty given by the "l_0-norm" of the signal's discrete graph gradient. The method proceeds by approximate proximal descent, applying the alpha-expansion procedure to minimize a proximal gradient in each iteration, and using a geometric decay of the penalty parameter across iterations. Under a cut-restricted isometry property for the measurement design, we prove global recovery guarantees for the estimated signal. For standard Gaussian designs, the required number of measurements is independent of the graph structure, and improves upon worst-case guarantees for total-variation (TV) compressed sensing on the 1-D and 2-D lattice graphs by polynomial and logarithmic factors, respectively. The method empirically yields lower mean-squared recovery error compared with TV regularization in regimes of moderate undersampling and moderate to high signal-to-noise, for several examples of changepoint signals and gradient-sparse phantom images.

Citations (6)

Summary

We haven't generated a summary for this paper yet.