Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gauging fractons: immobile non-Abelian quasiparticles, fractals, and position-dependent degeneracies (1905.05771v1)

Published 14 May 2019 in cond-mat.str-el, hep-th, and quant-ph

Abstract: The study of gapped quantum many-body systems in three spatial dimensions has uncovered the existence of quantum states hosting quasiparticles that are confined, not by energetics but by the structure of local operators, to move along lower dimensional submanifolds. These so-called "fracton" phases are beyond the usual topological quantum field theory description, and thus require new theoretical frameworks to describe them. Here we consider coupling fracton models to topological quantum field theories in (3+1) dimensions by starting with two copies of a known fracton model and gauging the $\mathbb{Z}_2$ symmetry that exchanges the two copies. This yields a class of exactly solvable lattice models that we study in detail for the case of the X-cube model and Haah's cubic code. The resulting phases host finite-energy non-Abelian immobile quasiparticles with robust degeneracies that depend on their relative positions. The phases also host non-Abelian string excitations with robust degeneracies that depend on the string geometry. Applying the construction to Haah's cubic code in particular provides an exactly solvable model with finite energy yet immobile non-Abelian quasiparticles that can only be created at the corners of operators with fractal support.

Summary

We haven't generated a summary for this paper yet.