Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Homological Algebra for Persistence Modules (1905.05744v5)

Published 14 May 2019 in math.AT, math.AC, and math.CT

Abstract: We develop some aspects of the homological algebra of persistence modules, in both the one-parameter and multi-parameter settings, considered as either sheaves or graded modules. The two theories are different. We consider the graded module and sheaf tensor product and Hom bifunctors as well as their derived functors, Tor and Ext, and give explicit computations for interval modules. We give a classification of injective, projective, and flat interval modules. We state Kunneth theorems and universal coefficient theorems for the homology and cohomology of chain complexes of persistence modules in both the sheaf and graded modules settings and show how these theorems can be applied to persistence modules arising from filtered cell complexes. We also give a Gabriel-Popescu theorem for persistence modules. Finally, we examine categories enriched over persistence modules. We show that the graded module point of view produces a closed symmetric monoidal category that is enriched over itself.

Summary

We haven't generated a summary for this paper yet.