Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Context-and-Spatial Aware Network for Multi-Person Pose Estimation (1905.05355v1)

Published 14 May 2019 in cs.CV

Abstract: Multi-person pose estimation is a fundamental yet challenging task in computer vision. Both rich context information and spatial information are required to precisely locate the keypoints for all persons in an image. In this paper, a novel Context-and-Spatial Aware Network (CSANet), which integrates both a Context Aware Path and Spatial Aware Path, is proposed to obtain effective features involving both context information and spatial information. Specifically, we design a Context Aware Path with structure supervision strategy and spatial pyramid pooling strategy to enhance the context information. Meanwhile, a Spatial Aware Path is proposed to preserve the spatial information, which also shortens the information propagation path from low-level features to high-level features. On top of these two paths, we employ a Heavy Head Path to further combine and enhance the features effectively. Experimentally, our proposed network outperforms state-of-the-art methods on the COCO keypoint benchmark, which verifies the effectiveness of our method and further corroborates the above proposition.

Citations (9)

Summary

We haven't generated a summary for this paper yet.