Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Disparity-Augmented Trajectories for Human Activity Recognition (1905.05344v1)

Published 14 May 2019 in cs.CV

Abstract: Numerous methods for human activity recognition have been proposed in the past two decades. Many of these methods are based on sparse representation, which describes the whole video content by a set of local features. Trajectories, being mid-level sparse features, are capable of describing the motion of an interest-point in 2D space. 2D trajectories might be affected by viewpoint changes, potentially decreasing their accuracy. In this paper, we initially propose and compare different 2D trajectory-based algorithms for human activity recognition. Moreover, we propose a new way of fusing disparity information with 2D trajectory information, without the calculation of 3D reconstruction. The obtained results show a 2.76\% improvement when using disparity-augmented trajectories, compared to using the classical 2D trajectory information only. Furthermore, we have also tested our method on the challenging Hollywood 3D dataset, and we have obtained competitive results, at a faster speed.

Summary

We haven't generated a summary for this paper yet.