Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multivariate Ranks and Quantiles using Optimal Transport: Consistency, Rates, and Nonparametric Testing (1905.05340v3)

Published 14 May 2019 in math.ST, math.PR, and stat.TH

Abstract: In this paper we study multivariate ranks and quantiles, defined using the theory of optimal transport, and build on the work of Chernozhukov et al.(2017) and Hallin et al.(2021). We study the characterization, computation and properties of the multivariate rank and quantile functions and their empirical counterparts. We derive the uniform consistency of these empirical estimates to their population versions, under certain assumptions. In fact, we prove a Glivenko-Cantelli type theorem that shows the asymptotic stability of the empirical rank map in any direction. Under mild structural assumptions, we provide global and local rates of convergence of the empirical quantile and rank maps. We also provide a sub-Gaussian tail bound for the global L_2-loss of the empirical quantile function. Further, we propose tuning parameter-free multivariate nonparametric tests -- a two-sample test and a test for mutual independence -- based on our notion of multivariate quantiles/ranks. Asymptotic consistency of these tests are shown and the rates of convergence of the associated test statistics are derived, both under the null and alternative hypotheses.

Citations (53)

Summary

We haven't generated a summary for this paper yet.