Papers
Topics
Authors
Recent
2000 character limit reached

A Linear-algebraic Proof of Hilbert's Ternary Quartic Theorem

Published 12 May 2019 in math.AG | (1905.04751v1)

Abstract: Hilbert's ternary quartic theorem states that every nonnegative degree 4 homogeneous polynomial in three variables can be written as a sum of three squares of homogeneous quadratic polynomials. We give a linear-algebraic approach to Hilbert's theorem by showing that a structured cone of positive semidefinite matrices is generated by rank 1 elements.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.