2000 character limit reached
A Linear-algebraic Proof of Hilbert's Ternary Quartic Theorem
Published 12 May 2019 in math.AG | (1905.04751v1)
Abstract: Hilbert's ternary quartic theorem states that every nonnegative degree 4 homogeneous polynomial in three variables can be written as a sum of three squares of homogeneous quadratic polynomials. We give a linear-algebraic approach to Hilbert's theorem by showing that a structured cone of positive semidefinite matrices is generated by rank 1 elements.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.