Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Complexity of fall coloring for restricted graph classes (1905.04695v1)

Published 12 May 2019 in cs.CC, cs.DM, and cs.DS

Abstract: We strengthen a result by Laskar and Lyle (Discrete Appl. Math. (2009), 330-338) by proving that it is NP-complete to decide whether a bipartite planar graph can be partitioned into three independent dominating sets. In contrast, we show that this is always possible for every maximal outerplanar graph with at least three vertices. Moreover, we extend their previous result by proving that deciding whether a bipartite graph can be partitioned into $k$ independent dominating sets is NP-complete for every $k \geq 3$. We also strengthen a result by Henning et al. (Discrete Math. (2009), 6451-6458) by showing that it is NP-complete to determine if a graph has two disjoint independent dominating sets, even when the problem is restricted to triangle-free planar graphs. Finally, for every $k \geq 3$, we show that there is some constant $t$ depending only on $k$ such that deciding whether a $k$-regular graph can be partitioned into $t$ independent dominating sets is NP-complete. We conclude by deriving moderately exponential-time algorithms for the problem.

Citations (5)

Summary

We haven't generated a summary for this paper yet.