Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Long monochromatic paths and cycles in 2-edge-colored multipartite graphs (1905.04657v1)

Published 12 May 2019 in math.CO

Abstract: We solve four similar problems: For every fixed $s$ and large $n$, we describe all values of $n_1,\ldots,n_s$ such that for every $2$-edge-coloring of the complete $s$-partite graph $K_{n_1,\ldots,n_s}$ there exists a monochromatic (i) cycle $C_{2n}$ with $2n$ vertices, (ii) cycle $C_{\geq 2n}$ with at least $2n$ vertices, (iii) path $P_{2n}$ with $2n$ vertices, and (iv) path $P_{2n+1}$ with $2n+1$ vertices. This implies a generalization for large $n$ of the conjecture by Gy\'arf\'as, Ruszink\'o, S\'ark\H{o}zy and Szemer\'edi that for every $2$-edge-coloring of the complete $3$-partite graph $K_{n,n,n}$ there is a monochromatic path $P_{2n+1}$. An important tool is our recent stability theorem on monochromatic connected matchings.

Summary

We haven't generated a summary for this paper yet.