Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Performance of Thompson Sampling on Logistic Bandits (1905.04654v1)

Published 12 May 2019 in stat.ML and cs.LG

Abstract: We study the logistic bandit, in which rewards are binary with success probability $\exp(\beta a\top \theta) / (1 + \exp(\beta a\top \theta))$ and actions $a$ and coefficients $\theta$ are within the $d$-dimensional unit ball. While prior regret bounds for algorithms that address the logistic bandit exhibit exponential dependence on the slope parameter $\beta$, we establish a regret bound for Thompson sampling that is independent of $\beta$. Specifically, we establish that, when the set of feasible actions is identical to the set of possible coefficient vectors, the Bayesian regret of Thompson sampling is $\tilde{O}(d\sqrt{T})$. We also establish a $\tilde{O}(\sqrt{d\eta T}/\lambda)$ bound that applies more broadly, where $\lambda$ is the worst-case optimal log-odds and $\eta$ is the "fragility dimension," a new statistic we define to capture the degree to which an optimal action for one model fails to satisfice for others. We demonstrate that the fragility dimension plays an essential role by showing that, for any $\epsilon > 0$, no algorithm can achieve $\mathrm{poly}(d, 1/\lambda)\cdot T{1-\epsilon}$ regret.

Citations (34)

Summary

We haven't generated a summary for this paper yet.