Papers
Topics
Authors
Recent
Search
2000 character limit reached

Interpret Federated Learning with Shapley Values

Published 11 May 2019 in cs.LG and stat.ML | (1905.04519v1)

Abstract: Federated Learning is introduced to protect privacy by distributing training data into multiple parties. Each party trains its own model and a meta-model is constructed from the sub models. In this way the details of the data are not disclosed in between each party. In this paper we investigate the model interpretation methods for Federated Learning, specifically on the measurement of feature importance of vertical Federated Learning where feature space of the data is divided into two parties, namely host and guest. For host party to interpret a single prediction of vertical Federated Learning model, the interpretation results, namely the feature importance, are very likely to reveal the protected data from guest party. We propose a method to balance the model interpretability and data privacy in vertical Federated Learning by using Shapley values to reveal detailed feature importance for host features and a unified importance value for federated guest features. Our experiments indicate robust and informative results for interpreting Federated Learning models.

Citations (80)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.