Papers
Topics
Authors
Recent
2000 character limit reached

Triangle-creation processes on cubic graphs

Published 11 May 2019 in cs.DM and math.CO | (1905.04490v1)

Abstract: An edge switch is an operation which makes a local change in a graph while maintaining the degree of every vertex. We introduce a switch move, called a triangle switch, which creates or deletes at least one triangle. Specifically, a make move is a triangle switch which chooses a path $zwvxy$ of length 4 and replaces it by a triangle $vxwv$ and an edge $yz$, while a break move performs the reverse operation. We consider various Markov chains which perform random triangle switches, and assume that every possible make or break move has positive probability of being performed. Our first result is that any such Markov chain is irreducible on the set of all 3-regular graphs with vertex set ${1,2,\ldots, n}$. For a particular, natural Markov chain of this type, we obtain a non-trivial linear upper and lower bounds on the number of triangles in the long run. These bounds are almost surely obtained in linear time, irrespective of the starting graph.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.