Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Synthetic-Neuroscore: Using A Neuro-AI Interface for Evaluating Generative Adversarial Networks (1905.04243v2)

Published 10 May 2019 in cs.CV, cs.LG, eess.IV, and eess.SP

Abstract: Generative adversarial networks (GANs) are increasingly attracting attention in the computer vision, natural language processing, speech synthesis and similar domains. Arguably the most striking results have been in the area of image synthesis. However, evaluating the performance of GANs is still an open and challenging problem. Existing evaluation metrics primarily measure the dissimilarity between real and generated images using automated statistical methods. They often require large sample sizes for evaluation and do not directly reflect human perception of image quality. In this work, we describe an evaluation metric we call Neuroscore, for evaluating the performance of GANs, that more directly reflects psychoperceptual image quality through the utilization of brain signals. Our results show that Neuroscore has superior performance to the current evaluation metrics in that: (1) It is more consistent with human judgment; (2) The evaluation process needs much smaller numbers of samples; and (3) It is able to rank the quality of images on a per GAN basis. A convolutional neural network (CNN) based neuro-AI interface is proposed to predict Neuroscore from GAN-generated images directly without the need for neural responses. Importantly, we show that including neural responses during the training phase of the network can significantly improve the prediction capability of the proposed model. Materials related to this work are provided at https://github.com/villawang/Neuro-AI-Interface.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Zhengwei Wang (15 papers)
  2. Qi She (37 papers)
  3. Alan F. Smeaton (85 papers)
  4. Tomas E. Ward (15 papers)
  5. Graham Healy (22 papers)
Citations (11)