Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Why scoring functions cannot assess tail properties (1905.04233v2)

Published 10 May 2019 in math.ST and stat.TH

Abstract: Motivated by the growing interest in sound forecast evaluation techniques with an emphasis on distribution tails rather than average behaviour, we investigate a fundamental question arising in this context: Can statistical features of distribution tails be elicitable, i.e. be the unique minimizer of an expected score? We demonstrate that expected scores are not suitable to distinguish genuine tail properties in a very strong sense. Specifically, we introduce the class of max-functionals, which contains key characteristics from extreme value theory, for instance the extreme value index. We show that its members fail to be elicitable and that their elicitation complexity is in fact infinite under mild regularity assumptions. Further we prove that, even if the information of a max-functional is reported via the entire distribution function, a proper scoring rule cannot separate max-functional values. These findings highlight the caution needed in forecast evaluation and statistical inference if relevant information is encoded by such functionals.

Summary

We haven't generated a summary for this paper yet.