Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EdgeSegNet: A Compact Network for Semantic Segmentation (1905.04222v1)

Published 10 May 2019 in cs.CV and cs.NE

Abstract: In this study, we introduce EdgeSegNet, a compact deep convolutional neural network for the task of semantic segmentation. A human-machine collaborative design strategy is leveraged to create EdgeSegNet, where principled network design prototyping is coupled with machine-driven design exploration to create networks with customized module-level macroarchitecture and microarchitecture designs tailored for the task. Experimental results showed that EdgeSegNet can achieve semantic segmentation accuracy comparable with much larger and computationally complex networks (>20x} smaller model size than RefineNet) as well as achieving an inference speed of ~38.5 FPS on an NVidia Jetson AGX Xavier. As such, the proposed EdgeSegNet is well-suited for low-power edge scenarios.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Zhong Qiu Lin (9 papers)
  2. Brendan Chwyl (7 papers)
  3. Alexander Wong (230 papers)
Citations (8)