Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Optimized Continual Learning with Attention Mechanism (1905.03980v1)

Published 10 May 2019 in cs.LG and stat.ML

Abstract: Though neural networks have achieved much progress in various applications, it is still highly challenging for them to learn from a continuous stream of tasks without forgetting. Continual learning, a new learning paradigm, aims to solve this issue. In this work, we propose a new model for continual learning, called Bayesian Optimized Continual Learning with Attention Mechanism (BOCL) that dynamically expands the network capacity upon the arrival of new tasks by Bayesian optimization and selectively utilizes previous knowledge (e.g. feature maps of previous tasks) via attention mechanism. Our experiments on variants of MNIST and CIFAR-100 demonstrate that our methods outperform the state-of-the-art in preventing catastrophic forgetting and fitting new tasks better.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ju Xu (7 papers)
  2. Jin Ma (64 papers)
  3. Zhanxing Zhu (54 papers)
Citations (6)