Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Toward Packet Routing with Fully-distributed Multi-agent Deep Reinforcement Learning (1905.03494v2)

Published 9 May 2019 in cs.NI and cs.AI

Abstract: Packet routing is one of the fundamental problems in computer networks in which a router determines the next-hop of each packet in the queue to get it as quickly as possible to its destination. Reinforcement learning (RL) has been introduced to design autonomous packet routing policies with local information of stochastic packet arrival and service. However, the curse of dimensionality of RL prohibits the more comprehensive representation of dynamic network states, thus limiting its potential benefit. In this paper, we propose a novel packet routing framework based on \emph{multi-agent} deep reinforcement learning (DRL) in which each router possess an \emph{independent} LSTM recurrent neural network for training and decision making in a \emph{fully distributed} environment. The LSTM recurrent neural network extracts routing features from rich information regarding backlogged packets and past actions, and effectively approximates the value function of Q-learning. We further allow each route to communicate periodically with direct neighbors so that a broader view of network state can be incorporated. Experimental results manifest that our multi-agent DRL policy can strike the delicate balance between congestion-aware and shortest routes, and significantly reduce the packet delivery time in general network topologies compared with its counterparts.

Citations (21)

Summary

We haven't generated a summary for this paper yet.