Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Testing Scenario Library Generation for Connected and Automated Vehicles, Part II: Case Studies (1905.03428v3)

Published 9 May 2019 in cs.RO and cs.AI

Abstract: Testing scenario library generation (TSLG) is a critical step for the development and deployment of connected and automated vehicles (CAVs). In Part I of this study, a general methodology for TSLG is proposed, and theoretical properties are investigated regarding the accuracy and efficiency of CAV evaluation. This paper aims to provide implementation examples and guidelines, and to enhance the proposed methodology under high-dimensional scenarios. Three typical cases, including cut-in, highway-exit, and car-following, are designed and studied in this paper. For each case, the process of library generation and CAV evaluation is elaborated. To address the challenges brought by high dimensions, the proposed methodology is further enhanced by reinforcement learning technique. For all three cases, results show that the proposed methods can accelerate the CAV evaluation process by multiple magnitudes with same evaluation accuracy, if compared with the on-road test method.

Citations (75)

Summary

We haven't generated a summary for this paper yet.