Papers
Topics
Authors
Recent
2000 character limit reached

Machine Learning Topological Phases with a Solid-state Quantum Simulator

Published 8 May 2019 in cond-mat.dis-nn, cond-mat.mes-hall, and quant-ph | (1905.03255v1)

Abstract: We report an experimental demonstration of a machine learning approach to identify exotic topological phases, with a focus on the three-dimensional chiral topological insulators. We show that the convolutional neural networks---a class of deep feed-forward artificial neural networks with widespread applications in machine learning---can be trained to successfully identify different topological phases protected by chiral symmetry from experimental raw data generated with a solid-state quantum simulator. Our results explicitly showcase the exceptional power of machine learning in the experimental detection of topological phases, which paves a way to study rich topological phenomena with the machine learning toolbox.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.