Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning Topological Phases with a Solid-state Quantum Simulator (1905.03255v1)

Published 8 May 2019 in cond-mat.dis-nn, cond-mat.mes-hall, and quant-ph

Abstract: We report an experimental demonstration of a machine learning approach to identify exotic topological phases, with a focus on the three-dimensional chiral topological insulators. We show that the convolutional neural networks---a class of deep feed-forward artificial neural networks with widespread applications in machine learning---can be trained to successfully identify different topological phases protected by chiral symmetry from experimental raw data generated with a solid-state quantum simulator. Our results explicitly showcase the exceptional power of machine learning in the experimental detection of topological phases, which paves a way to study rich topological phenomena with the machine learning toolbox.

Summary

We haven't generated a summary for this paper yet.