Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Image-based reconstruction for the impact problems by using DPNNs (1905.03229v3)

Published 8 Apr 2019 in cs.OH, cs.CV, and eess.IV

Abstract: With the improvement of the pattern recognition and feature extraction of Deep Neural Networks (DPNNs), image-based design and optimization have been widely used in multidisciplinary researches. Recently, a Reconstructive Neural Network (ReConNN) has been proposed to obtain an image-based model from an analysis-based model [1, 2], and a steady-state heat transfer of a heat sink has been successfully reconstructed. Commonly, this method is suitable to handle stable-state problems. However, it has difficulties handling nonlinear transient impact problems, due to the bottlenecks of the Deep Neural Network (DPNN). For example, nonlinear transient problems make it difficult for the Generative Adversarial Network (GAN) to generate various reasonable images. Therefore, in this study, an improved ReConNN method is proposed to address the mentioned weaknesses. Time-dependent ordered images can be generated. Furthermore, the improved method is successfully applied in impact simulation case and engineering experiment. Through the experiments, comparisons and analyses, the improved method is demonstrated to outperform the former one in terms of its accuracy, efficiency and costs.

Summary

We haven't generated a summary for this paper yet.