Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multifractal dimensions for random matrices, chaotic quantum maps, and many-body systems (1905.03099v2)

Published 8 May 2019 in cond-mat.stat-mech, nlin.CD, and quant-ph

Abstract: Multifractal dimensions allow for characterizing the localization properties of states in complex quantum systems. For ergodic states the finite-size versions of fractal dimensions converge to unity in the limit of large system size. However, the approach to the limiting behavior is remarkably slow. Thus, an understanding of the scaling and finite-size properties of fractal dimensions is essential. We present such a study for random matrix ensembles, and compare with two chaotic quantum systems --- the kicked rotor and a spin chain. For random matrix ensembles we analytically obtain the finite-size dependence of the mean behavior of the multifractal dimensions, which provides a lower bound to the typical (logarithmic) averages. We show that finite statistics has remarkably strong effects, so that even random matrix computations deviate from analytic results (and show strong sample-to-sample variation), such that restoring agreement requires exponentially large sample sizes. For the quantized standard map (kicked rotor) the multifractal dimensions are found to follow the random matrix predictions closely, with the same finite statistics effects. For a XXZ spin-chain we find significant deviations from the random matrix prediction --- the large-size scaling follows a system-specific path towards unity. This suggests that local many-body Hamiltonians are "weakly ergodic", in the sense that their eigenfunction statistics deviate from random matrix theory.

Summary

We haven't generated a summary for this paper yet.