Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Minimalistic Explanations: Capturing the Essence of Decisions (1905.02994v1)

Published 8 May 2019 in cs.HC

Abstract: The use of complex machine learning models can make systems opaque to users. Machine learning research proposes the use of post-hoc explanations. However, it is unclear if they give users insights into otherwise uninterpretable models. One minimalistic way of explaining image classifications by a deep neural network is to show only the areas that were decisive for the assignment of a label. In a pilot study, 20 participants looked at 14 of such explanations generated either by a human or the LIME algorithm. For explanations of correct decisions, they identified the explained object with significantly higher accuracy (75.64% vs. 18.52%). We argue that this shows that explanations can be very minimalistic while retaining the essence of a decision, but the decision-making contexts that can be conveyed in this manner is limited. Finally, we found that explanations are unique to the explainer and human-generated explanations were assigned 79% higher trust ratings. As a starting point for further studies, this work shares our first insights into quality criteria of post-hoc explanations.

Citations (5)

Summary

We haven't generated a summary for this paper yet.