Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Max-Cut in Degenerate $H$-Free Graphs (1905.02856v3)

Published 8 May 2019 in math.CO and cs.DM

Abstract: We obtain several lower bounds on the $\textsf{Max-Cut}$ of $d$-degenerate $H$-free graphs. Let $f(m,d,H)$ denote the smallest $\textsf{Max-Cut}$ of an $H$-free $d$-degenerate graph on $m$ edges. We show that $f(m,d,K_r)\ge \left(\frac{1}{2} + d{-1+\Omega(r{-1})}\right)m$, generalizing a recent work of Carlson, Kolla, and Trevisan. We also give bounds on $f(m,d,H)$ when $H$ is a cycle, odd wheel, or a complete bipartite graph with at most 4 vertices on one side. We also show stronger bounds on $f(m,d,K_r)$ assuming a conjecture of Alon, Bollabas, Krivelevich, and Sudakov (2003). We conjecture that $f(m,d,K_r)= \left( \frac{1}{2} + \Theta_r(d{-1/2}) \right)m$ for every $r\ge 3$, and show that this conjecture implies the ABKS conjecture.

Summary

We haven't generated a summary for this paper yet.