Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Intentional Attention Mask Transformation for Robust CNN Classification (1905.02719v2)

Published 7 May 2019 in cs.CV and cs.AI

Abstract: Convolutional Neural Networks have achieved impressive results in various tasks, but interpreting the internal mechanism is a challenging problem. To tackle this problem, we exploit a multi-channel attention mechanism in feature space. Our network architecture allows us to obtain an attention mask for each feature while existing CNN visualization methods provide only a common attention mask for all features. We apply the proposed multi-channel attention mechanism to multi-attribute recognition task. We can obtain different attention mask for each feature and for each attribute. Those analyses give us deeper insight into the feature space of CNNs. Furthermore, our proposed attention mechanism naturally derives a method for improving the robustness of CNNs. From the observation of feature space based on the proposed attention mask, we demonstrate that we can obtain robust CNNs by intentionally emphasizing features that are important for attributes. The experimental results for the benchmark dataset show that the proposed method gives high human interpretability while accurately grasping the attributes of the data, and improves network robustness.

Summary

We haven't generated a summary for this paper yet.