Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Regression Equilibrium (1905.02576v1)

Published 4 May 2019 in cs.GT and cs.LG

Abstract: Prediction is a well-studied machine learning task, and prediction algorithms are core ingredients in online products and services. Despite their centrality in the competition between online companies who offer prediction-based products, the \textit{strategic} use of prediction algorithms remains unexplored. The goal of this paper is to examine strategic use of prediction algorithms. We introduce a novel game-theoretic setting that is based on the PAC learning framework, where each player (aka a prediction algorithm aimed at competition) seeks to maximize the sum of points for which it produces an accurate prediction and the others do not. We show that algorithms aiming at generalization may wittingly mispredict some points to perform better than others on expectation. We analyze the empirical game, i.e., the game induced on a given sample, prove that it always possesses a pure Nash equilibrium, and show that every better-response learning process converges. Moreover, our learning-theoretic analysis suggests that players can, with high probability, learn an approximate pure Nash equilibrium for the whole population using a small number of samples.

Citations (21)

Summary

We haven't generated a summary for this paper yet.