Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Generation of Unrestricted Adversarial Inputs (1905.02463v2)

Published 7 May 2019 in cs.LG, cs.CR, cs.CV, and stat.ML

Abstract: Neural networks are vulnerable to adversarially-constructed perturbations of their inputs. Most research so far has considered perturbations of a fixed magnitude under some $l_p$ norm. Although studying these attacks is valuable, there has been increasing interest in the construction of (and robustness to) unrestricted attacks, which are not constrained to a small and rather artificial subset of all possible adversarial inputs. We introduce a novel algorithm for generating such unrestricted adversarial inputs which, unlike prior work, is adaptive: it is able to tune its attacks to the classifier being targeted. It also offers a 400-2,000x speedup over the existing state of the art. We demonstrate our approach by generating unrestricted adversarial inputs that fool classifiers robust to perturbation-based attacks. We also show that, by virtue of being adaptive and unrestricted, our attack is able to defeat adversarial training against it.

Citations (7)

Summary

We haven't generated a summary for this paper yet.