Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Elastic-Degenerate String Matching via Fast Matrix Multiplication (1905.02298v3)

Published 7 May 2019 in cs.DS

Abstract: An elastic-degenerate (ED) string is a sequence of $n$ sets of strings of total length $N$, which was recently proposed to model a set of similar sequences. The ED string matching (EDSM) problem is to find all occurrences of a pattern of length $m$ in an ED text. An $O(nm{1.5}\sqrt{\log m}+N)$-time algorithm for EDSM is known [Aoyama et al., CPM 2018]. The standard assumption in the prior work on this question is that $N$ is substantially larger than both $n$ and $m$, and thus we would like to have a linear dependency on the former. Under this assumption, the natural open problem is whether we can decrease the 1.5 exponent in the time complexity, similarly as in the related (but, to the best of our knowledge, not equivalent) word break problem [Backurs and Indyk, FOCS 2016]. Our starting point is a conditional lower bound for EDSM. We use the popular combinatorial Boolean Matrix Multiplication (BMM) conjecture stating that there is no truly subcubic combinatorial algorithm for BMM [Abboud and Williams, FOCS 2014]. By designing an appropriate reduction we show that a combinatorial algorithm solving the EDSM problem in $O(nm{1.5-e}+N)$ time, for any $e>0$, refutes this conjecture. Our reduction should be understood as an indication that decreasing the exponent requires fast matrix multiplication. String periodicity and fast Fourier transform are two standard tools in string algorithms. Our main technical contribution is that we successfully combine these tools with fast matrix multiplication to design a non-combinatorial $\tilde{O}(nm{\omega-1}+N)$-time algorithm for EDSM, where $\omega$ denotes the matrix multiplication exponent. To the best of our knowledge, we are the first to combine these tools. In particular, using the fact that $\omega<2.373$ [Le Gall, ISSAC 2014; Williams, STOC 2012], we obtain an $O(nm{1.373}+N)$-time algorithm for EDSM.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Giulia Bernardini (13 papers)
  2. Paweł Gawrychowski (151 papers)
  3. Nadia Pisanti (12 papers)
  4. Solon P. Pissis (52 papers)
  5. Giovanna Rosone (19 papers)
Citations (17)

Summary

We haven't generated a summary for this paper yet.