Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Zero-Shot Audio Classification Based on Class Label Embeddings (1905.01926v2)

Published 6 May 2019 in cs.LG, cs.SD, eess.AS, and stat.ML

Abstract: This paper proposes a zero-shot learning approach for audio classification based on the textual information about class labels without any audio samples from target classes. We propose an audio classification system built on the bilinear model, which takes audio feature embeddings and semantic class label embeddings as input, and measures the compatibility between an audio feature embedding and a class label embedding. We use VGGish to extract audio feature embeddings from audio recordings. We treat textual labels as semantic side information of audio classes, and use Word2Vec to generate class label embeddings. Results on the ESC-50 dataset show that the proposed system can perform zero-shot audio classification with small training dataset. It can achieve accuracy (26 % on average) better than random guess (10 %) on each audio category. Particularly, it reaches up to 39.7 % for the category of natural audio classes.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Huang Xie (12 papers)
  2. Tuomas Virtanen (112 papers)
Citations (28)