Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-standard inference for augmented double autoregressive models with null volatility coefficients (1905.01798v1)

Published 6 May 2019 in econ.EM and stat.ME

Abstract: This paper considers an augmented double autoregressive (DAR) model, which allows null volatility coefficients to circumvent the over-parameterization problem in the DAR model. Since the volatility coefficients might be on the boundary, the statistical inference methods based on the Gaussian quasi-maximum likelihood estimation (GQMLE) become non-standard, and their asymptotics require the data to have a finite sixth moment, which narrows applicable scope in studying heavy-tailed data. To overcome this deficiency, this paper develops a systematic statistical inference procedure based on the self-weighted GQMLE for the augmented DAR model. Except for the Lagrange multiplier test statistic, the Wald, quasi-likelihood ratio and portmanteau test statistics are all shown to have non-standard asymptotics. The entire procedure is valid as long as the data is stationary, and its usefulness is illustrated by simulation studies and one real example.

Summary

We haven't generated a summary for this paper yet.