Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modulus of continuity and Heinz-Schwarz type inequalities of solutions to biharmonic equations (1905.01794v3)

Published 6 May 2019 in math.CV

Abstract: For positive integers $n\geq2$ and $m\geq1$, suppose that function $f\in\mathcal{C}{4}(\mathbb{B}{n},\mathbb{R}{m})$ satisfying the following: $(1)$ the inhomogeneous biharmonic equation $\Delta(\Delta f)=g$ ($g\in \mathcal{C}(\overline{\mathbb{B}{n}},\mathbb{R}{m})$) in $\mathbb{B}{n}$, (2) the boundary conditions $f=\varphi_{1}$ $(\varphi_{1}\in \mathcal{C}(\mathbb{S}{n-1},\mathbb{R}{m}))$ on $\mathbb{S}{n-1}$ and $\partial f/\partial\mathbf{n}=\varphi_{2}$ ( $\varphi_{2}\in \mathcal{C}(\mathbb{S}{n-1},\mathbb{R}{m})$) on $\mathbb{S}{n-1}$, where $\partial /\partial\mathbf{n}$ stands for the inward normal derivative, $\mathbb{B}{n}$ is the unit ball in $\mathbb{R}{n}$ and $\mathbb{S}{n-1}$ is the unit sphere of $\mathbb{B}{n}$. First, we establish the representation formula of solutions to the above inhomogeneous biharmonic Dirichlet problem, and then discuss the Heinz-Schwarz type inequalities and the modulus of continuity of the solutions.

Summary

We haven't generated a summary for this paper yet.