Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Entanglement classification via integer partitions (1905.01751v2)

Published 5 May 2019 in quant-ph

Abstract: In [M. Walter et al., Science 340, 1205, 7 June (2013)], they gave a sufficient condition for genuinely entangled pure states and discussed SLOCC classification via polytopes and the eigenvalues of the single-particle states. In this paper, for $4n$ qubits, we show the invariance of algebraic multiplicities (AMs) and geometric multiplicities (GMs) of eigenvalues and the invariance of sizes of Jordan blocks (JBs) of the coefficient matrices under SLOCC. We explore properties of spectra, eigenvectors, generalized eigenvectors, standard Jordan normal forms (SJNFs), and Jordan chains of the coefficient matrices. The properties and invariance permit a reduction of SLOCC classification of $4n$ qubits to integer partitions (in number theory) of the number $2{2n}-k$ and the AMs.

Summary

We haven't generated a summary for this paper yet.