Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convex optimization of programmable quantum computers (1905.01316v2)

Published 3 May 2019 in quant-ph, cond-mat.other, math-ph, math.MP, and physics.comp-ph

Abstract: A fundamental model of quantum computation is the programmable quantum gate array. This is a quantum processor that is fed by a program state that induces a corresponding quantum operation on input states. While being programmable, any finite-dimensional design of this model is known to be nonuniversal, meaning that the processor cannot perfectly simulate an arbitrary quantum channel over the input. Characterizing how close the simulation is and finding the optimal program state have been open questions for the past 20 years. Here, we answer these questions by showing that the search for the optimal program state is a convex optimization problem that can be solved via semidefinite programming and gradient-based methods commonly employed for machine learning. We apply this general result to different types of processors, from a shallow design based on quantum teleportation, to deeper schemes relying on port-based teleportation and parametric quantum circuits.

Summary

We haven't generated a summary for this paper yet.