Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Statistically Principled and Computationally Efficient Approach to Speech Enhancement using Variational Autoencoders (1905.01209v2)

Published 3 May 2019 in cs.SD, cs.LG, eess.AS, and stat.ML

Abstract: Recent studies have explored the use of deep generative models of speech spectra based of variational autoencoders (VAEs), combined with unsupervised noise models, to perform speech enhancement. These studies developed iterative algorithms involving either Gibbs sampling or gradient descent at each step, making them computationally expensive. This paper proposes a variational inference method to iteratively estimate the power spectrogram of the clean speech. Our main contribution is the analytical derivation of the variational steps in which the en-coder of the pre-learned VAE can be used to estimate the varia-tional approximation of the true posterior distribution, using the very same assumption made to train VAEs. Experiments show that the proposed method produces results on par with the afore-mentioned iterative methods using sampling, while decreasing the computational cost by a factor 36 to reach a given performance .

Citations (21)

Summary

We haven't generated a summary for this paper yet.