Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
12 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Semi-supervised Sequence-to-sequence ASR using Unpaired Speech and Text (1905.01152v2)

Published 30 Apr 2019 in eess.AS, cs.CL, cs.IR, cs.LG, and cs.SD

Abstract: Sequence-to-sequence automatic speech recognition (ASR) models require large quantities of data to attain high performance. For this reason, there has been a recent surge in interest for unsupervised and semi-supervised training in such models. This work builds upon recent results showing notable improvements in semi-supervised training using cycle-consistency and related techniques. Such techniques derive training procedures and losses able to leverage unpaired speech and/or text data by combining ASR with Text-to-Speech (TTS) models. In particular, this work proposes a new semi-supervised loss combining an end-to-end differentiable ASR$\rightarrow$TTS loss with TTS$\rightarrow$ASR loss. The method is able to leverage both unpaired speech and text data to outperform recently proposed related techniques in terms of \%WER. We provide extensive results analyzing the impact of data quantity and speech and text modalities and show consistent gains across WSJ and Librispeech corpora. Our code is provided in ESPnet to reproduce the experiments.

Citations (42)

Summary

We haven't generated a summary for this paper yet.