Papers
Topics
Authors
Recent
Search
2000 character limit reached

Semi-supervised Sequence-to-sequence ASR using Unpaired Speech and Text

Published 30 Apr 2019 in eess.AS, cs.CL, cs.IR, cs.LG, and cs.SD | (1905.01152v2)

Abstract: Sequence-to-sequence automatic speech recognition (ASR) models require large quantities of data to attain high performance. For this reason, there has been a recent surge in interest for unsupervised and semi-supervised training in such models. This work builds upon recent results showing notable improvements in semi-supervised training using cycle-consistency and related techniques. Such techniques derive training procedures and losses able to leverage unpaired speech and/or text data by combining ASR with Text-to-Speech (TTS) models. In particular, this work proposes a new semi-supervised loss combining an end-to-end differentiable ASR$\rightarrow$TTS loss with TTS$\rightarrow$ASR loss. The method is able to leverage both unpaired speech and text data to outperform recently proposed related techniques in terms of \%WER. We provide extensive results analyzing the impact of data quantity and speech and text modalities and show consistent gains across WSJ and Librispeech corpora. Our code is provided in ESPnet to reproduce the experiments.

Citations (42)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.