Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Wide subcategories and lattices of torsion classes (1905.01148v2)

Published 3 May 2019 in math.CT and math.RT

Abstract: In this paper, we study the relationship between wide subcategories and torsion classes of an abelian length category $\mathcal{A}$ from the point of view of lattice theory. Motivated by $\tau$-tilting reduction of Jasso, we mainly focus on intervals $[\mathcal{U},\mathcal{T}]$ in the lattice $\operatorname{\mathsf{tors}} \mathcal{A}$ of torsion classes in $\mathcal{A}$ such that $\mathcal{W}:=\mathcal{U}\perp \cap \mathcal{T}$ is a wide subcategory of $\mathcal{A}$; we call these intervals wide intervals. We prove that a wide interval $[\mathcal{U},\mathcal{T}]$ is isomorphic to the lattice $\operatorname{\mathsf{tors}} \mathcal{W}$ of torsion classes in the abelian category $\mathcal{W}$. We also characterize wide intervals in two ways: First, in purely lattice theoretic terms based on the brick labeling established by Demonet--Iyama--Reading--Reiten--Thomas; and second, in terms of the Ingalls--Thomas correspondences between torsion classes and wide subcategories, which were further developed by Marks--\v{S}\v{t}ov\'{i}\v{c}ek.

Summary

We haven't generated a summary for this paper yet.