Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gender Classification from Iris Texture Images Using a New Set of Binary Statistical Image Features (1905.00372v1)

Published 1 May 2019 in cs.CV

Abstract: Soft biometric information such as gender can contribute to many applications like as identification and security. This paper explores the use of a Binary Statistical Features (BSIF) algorithm for classifying gender from iris texture images captured with NIR sensors. It uses the same pipeline for iris recognition systems consisting of iris segmentation, normalisation and then classification. Experiments show that applying BSIF is not straightforward since it can create artificial textures causing misclassification. In order to overcome this limitation, a new set of filters was trained from eye images and different sized filters with padding bands were tested on a subject-disjoint database. A Modified-BSIF (MBSIF) method was implemented. The latter achieved better gender classification results (94.6\% and 91.33\% for the left and right eye respectively). These results are competitive with the state of the art in gender classification. In an additional contribution, a novel gender labelled database was created and it will be available upon request.

Citations (9)

Summary

We haven't generated a summary for this paper yet.