Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learned Image Compression with Soft Bit-based Rate-Distortion Optimization (1905.00190v1)

Published 1 May 2019 in eess.IV and cs.MM

Abstract: This paper introduces the notion of soft bits to address the rate-distortion optimization for learning-based image compression. Recent methods for such compression train an autoencoder end-to-end with an objective to strike a balance between distortion and rate. They are faced with the zero gradient issue due to quantization and the difficulty of estimating the rate accurately. Inspired by soft quantization, we represent quantization indices of feature maps with differentiable soft bits. This allows us to couple tightly the rate estimation with context-adaptive binary arithmetic coding. It also provides a differentiable distortion objective function. Experimental results show that our approach achieves the state-of-the-art compression performance among the learning-based schemes in terms of MS-SSIM and PSNR.

Citations (4)

Summary

We haven't generated a summary for this paper yet.