Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotically optimal sequential FDR and pFDR control with (or without) prior information on the number of signals (1905.00177v3)

Published 1 May 2019 in stat.ME, math.ST, and stat.TH

Abstract: We investigate asymptotically optimal multiple testing procedures for streams of sequential data in the context of prior information on the number of false null hypotheses ("signals"). We show that the "gap" and "gap-intersection" procedures, recently proposed and shown by Song and Fellouris (2017, Electron. J. Statist.) to be asymptotically optimal for controlling type 1 and 2 familywise error rates (FWEs), are also asymptotically optimal for controlling FDR/FNR when their critical values are appropriately adjusted. Generalizing this result, we show that these procedures, again with appropriately adjusted critical values, are asymptotically optimal for controlling any multiple testing error metric that is bounded between multiples of FWE in a certain sense. This class of metrics includes FDR/FNR but also pFDR/pFNR, the per-comparison and per-family error rates, and the false positive rate. Our analysis includes asymptotic regimes in which the number of null hypotheses approaches $\infty$ as the type 1 and 2 error metrics approach $0$.

Summary

We haven't generated a summary for this paper yet.