Papers
Topics
Authors
Recent
Search
2000 character limit reached

ResNet Can Be Pruned 60x: Introducing Network Purification and Unused Path Removal (P-RM) after Weight Pruning

Published 30 Apr 2019 in cs.LG, cs.AI, cs.CV, and stat.ML | (1905.00136v1)

Abstract: The state-of-art DNN structures involve high computation and great demand for memory storage which pose intensive challenge on DNN framework resources. To mitigate the challenges, weight pruning techniques has been studied. However, high accuracy solution for extreme structured pruning that combines different types of structured sparsity still waiting for unraveling due to the extremely reduced weights in DNN networks. In this paper, we propose a DNN framework which combines two different types of structured weight pruning (filter and column prune) by incorporating alternating direction method of multipliers (ADMM) algorithm for better prune performance. We are the first to find non-optimality of ADMM process and unused weights in a structured pruned model, and further design an optimization framework which contains the first proposed Network Purification and Unused Path Removal algorithms which are dedicated to post-processing an structured pruned model after ADMM steps. Some high lights shows we achieve 232x compression on LeNet-5, 60x compression on ResNet-18 CIFAR-10 and over 5x compression on AlexNet. We share our models at anonymous link http://bit.ly/2VJ5ktv.

Citations (37)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.