Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A data-efficient geometrically inspired polynomial kernel for robot inverse dynamics (1904.13317v4)

Published 30 Apr 2019 in cs.RO, cs.LG, and cs.SY

Abstract: In this paper, we introduce a novel data-driven inverse dynamics estimator based on Gaussian Process Regression. Driven by the fact that the inverse dynamics can be described as a polynomial function on a suitable input space, we propose the use of a novel kernel, called Geometrically Inspired Polynomial Kernel (GIP). The resulting estimator behaves similarly to model-based approaches as concerns data efficiency. Indeed, we proved that the GIP kernel defines a finite-dimensional Reproducing Kernel Hilbert Space that contains the inverse dynamics function computed through the Rigid Body Dynamics. The proposed kernel is based on the recently introduced Multiplicative Polynomial Kernel, a redefinition of the classical polynomial kernel equipped with a set of parameters that allows for a higher regularization. We tested the proposed approach in a simulated environment, and also in real experiments with a UR10 robot. The obtained results confirm that, compared to other data-driven estimators, the proposed approach is more data-efficient and exhibits better generalization properties. Instead, with respect to model-based estimators, our approach requires less prior information and is not affected by model bias.

Summary

We haven't generated a summary for this paper yet.