Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fourier Transform Approach to Machine Learning II: Fourier Clustering (1904.13241v3)

Published 29 Apr 2019 in cs.LG and stat.ML

Abstract: We propose a Fourier-based approach for optimization of several clustering algorithms. Mathematically, clusters data can be described by a density function represented by the Dirac mixture distribution. The density function can be smoothed by applying the Fourier transform and a Gaussian filter. The determination of the optimal standard deviation of the Gaussian filter will be accomplished by the use of a convergence criterion related to the correlation between the smoothed and the original density functions. In principle, the optimal smoothed density function exhibits local maxima, which correspond to the cluster centroids. Thus, the complex task of finding the centroids of the clusters is simplified by the detection of the peaks of the smoothed density function. A multiple sliding windows procedure is used to detect the peaks. The remarkable accuracy of the proposed algorithm demonstrates its capability as a reliable general method for enhancement of the clustering performance, its global optimization and also removing the initialization problem in many clustering methods.

Summary

We haven't generated a summary for this paper yet.