Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

"Why Should You Trust My Explanation?" Understanding Uncertainty in LIME Explanations (1904.12991v2)

Published 29 Apr 2019 in cs.LG, cs.AI, and stat.ML

Abstract: Methods for interpreting machine learning black-box models increase the outcomes' transparency and in turn generates insight into the reliability and fairness of the algorithms. However, the interpretations themselves could contain significant uncertainty that undermines the trust in the outcomes and raises concern about the model's reliability. Focusing on the method "Local Interpretable Model-agnostic Explanations" (LIME), we demonstrate the presence of two sources of uncertainty, namely the randomness in its sampling procedure and the variation of interpretation quality across different input data points. Such uncertainty is present even in models with high training and test accuracy. We apply LIME to synthetic data and two public data sets, text classification in 20 Newsgroup and recidivism risk-scoring in COMPAS, to support our argument.

Citations (19)

Summary

We haven't generated a summary for this paper yet.