Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Algorithmic approach to strong consistency analysis of finite difference approximations to PDE systems (1904.12912v1)

Published 29 Apr 2019 in cs.SC, math.AP, math.NA, and math.RA

Abstract: For a wide class of polynomially nonlinear systems of partial differential equations we suggest an algorithmic approach to the s(trong)-consistency analysis of their finite difference approximations on Cartesian grids. First we apply the differential Thomas decomposition to the input system, resulting in a partition of the solution set. We consider the output simple subsystem that contains a solution of interest. Then, for this subsystem, we suggest an algorithm for verification of s-consistency for its finite difference approximation. For this purpose we develop a difference analogue of the differential Thomas decomposition, both of which jointly allow to verify the s-consistency of the approximation. As an application of our approach, we show how to produce s-consistent difference approximations to the incompressible Navier-Stokes equations including the pressure Poisson equation.

Citations (3)

Summary

We haven't generated a summary for this paper yet.