Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Cross-Layer Approach to Data-aided Sensing using Compressive Random Access (1904.12556v1)

Published 29 Apr 2019 in cs.IT and math.IT

Abstract: In this paper, data-aided sensing as a cross-layer approach in Internet-of-Things (IoT) applications is studied, where multiple IoT nodes collect measurements and transmit them to an Access Point (AP). It is assumed that measurements have a sparse representation (due to spatial correlation) and the notion of Compressive Sensing (CS) can be exploited for efficient data collection. For data-aided sensing, a node selection criterion is proposed to efficiently reconstruct a target signal through iterations with a small number of measurements from selected nodes. Together with Compressive Random Access (CRA) to collect measurements from nodes, compressive transmission request is proposed to efficiently send a request signal to a group of selected nodes. Error analysis on compressive transmission request is carried out and the impact of errors on the performance of data-aided sensing is studied. Simulation results show that data-aided sensing allows to reconstruct the target information with a small number of active nodes and is robust to nodes' decision errors on compressive transmission request.

Citations (11)

Summary

We haven't generated a summary for this paper yet.